
20 CROSSTALK The Journal of Defense Software Engineering September 2007

This article describes the experiences
of the Hill Air Force Base software

engineers in the 309 Software
Maintenance Group (SMXG) who devel-
op the Operational Flight Program
(OFP) for the Fire Control Computer
(FCC) of the Block 30 F-16 aircraft. This
article details how the engineers incorpo-
rated an SOA to automate its develop-
ment and evaluation process of weapon
coefficients for the delivery of air-to-
ground munitions.

The use of open source and stan-
dards-based technologies were key suc-
cess factors for a small team to accom-
plish the SOA implementation in a do-it-
yourself fashion. Using publicly available
open source software was instrumental in
minimizing the implementation time and
associated interruptions to the engineers’
normal OFP candidate workflow.
Choosing technology based on open
standards ensured that they were maxi-
mizing the interoperability between sys-
tems.

The engineers were successful in re-
using data and applications previously
deployed in single-user, single-computer
configuration and transforming them

into a unified multiuser client-server plat-
form that resulted in a building-wide net-
work capability. As a result, non-collocat-
ed system engineers, developers, and
testers had access to the design and eval-
uation tools.

The improved collaboration resulting
from the orchestration of network appli-
cations and shared resources enabled the
engineers to achieve a return on invest-
ment (ROI) and progress in meeting its
309 Maintenance Wing’s AS9100 objec-
tives of lowering cost, meeting schedule,
improving quality, and fostering a culture
of continuous improvement.

This article proceeds by first provid-
ing a background section that introduces
the key terminology. Next, the article
describes the former development and
evaluation process. Then, the article high-
lights former inefficiencies and provides
the solution which incorporated an SOA
as an integration tool to achieve better
results.

Background
1. What is a weapon coefficient?

Weapon coefficients are parameters
used to calculate weapon trajectories.

Examples of weapon coefficients
include weight, the cross-sectional
area, and other aerodynamic perfor-
mance factors.

2. What is a footprint?
For every weapon release there is an
associated area on the ground repre-
senting the possible impact points.
This area is referred to as the foot-
print.

3. What is a flyout?
In particular, there are four points on
the boundary of the footprint that are
of interest: the Maximum Along
Track Range, the Minimum Along
Track Range, The Maximum Right
Cross Track Range, and the
Maximum Left Cross Track Range.
These points correspond to the
longest forward distance, the shortest
forward distance, the furthest right-
forward distance, and the furthest
left-forward distance, respectively,
that the weapon can achieve. These
points are referred to as flyouts.

4. What is truth data?
Truth data is the real-world results
used to compare calculated trajecto-
ries and impact points. Truth data is
typically provided by the weapon
manufacturer in the form of files or a
computer application (weapon
model) which produces an output file.

Former Weapon Coefficient
Design Process
Figure 1 shows a top view of a Joint
Direct Attack Munition (JDAM) release.
In the FCC, the four JDAM flyouts are a
function of the weapon release point and
the weapon coefficients. The four flyouts
define a quad-ellipse footprint.

Design Objective: Generate the opti-
mal set of weapon coefficients to deter-
mine JDAM flyouts for all release points.

Figure 2 shows the former 3-stage
weapon coefficient design process. In

Applying a Service-Oriented Architecture to
Operational Flight Program Development

This article describes how a Service-Oriented Architecture (SOA) was successfully applied to reuse data and applica-
tions previously deployed in single-user, single-computer configurations. The collection of data and applications was
transformed into a unified, multiuser, client-server platform through the use of open source and standards-based tech-
nologies to minimize development time, maximize interoperability, and facilitate collaboration. The collaboration result-
ing from the multiuser network capability and shared resources enabled progress towards the Aerospace Basic Quality
System Standard (AS9100) goals of lowering cost, meeting schedule, improving quality, and fostering a culture of con-
tinuous improvement.

Mitch Chan
309 Software Maintenance Group, Hill Air Force Base

Weapon Release

M inimum Along Track

Range

M ximum Alon

Maximum

CrossTrack

Range

Maximum

CrossTrack

Range

Maximum Along Track

Range

Minimum Along Track

Range

Maximum

Cross Track

Range

Maximum

Cross Track

Range

Weapon Release

T

Figure 1: JDAM Flyouts

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
SEP 2007 2. REPORT TYPE

3. DATES COVERED
 00-00-2007 to 00-00-2007

4. TITLE AND SUBTITLE
Applying a Service-Oriented Architecture to Operational Flight Program
Development

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
309 SMXG,6137 Wardleigh RD,Hill AFB,UT,84056

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
CROSSTALK The Journal of Defense Software Engineering, September 2007

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

4

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

September 2007 www.stsc.hill.af.mil 21

stage 1, the system designer ran the
weapon models to generate data for the
purpose of comparing the results of the
FCC calculations. In stage 2, the system
designer generated a set of weapon coef-
ficients intended to meet the design
objectives stated above. In order to com-
plete this task conveniently, the system
designer used a simulation of the FCC
OFP. Finally, in stage 3, the system
designer handed off the weapon coeffi-
cients to the developer who incorporated
the weapon coefficients into the OFP
code. Both the developer and tester com-
pared the test stand results against the
simulator results used in stage 2.

Inefficiencies of the Former
Weapon Coefficient Design
Process
From a resource point-of-view, the for-
mer design process relied predominantly
on the system designer, who performed
stage 1 and stage 2. Because this process
was serial, the developer and the tester
were kept waiting until the end of design
process. The system designer became the
specialist and limited his bandwidth (avail-
able time and energy) to work on other
projects.

The design process did not scale well.
For practical purposes, the system
designer addressed one weapon at a time,
which caused a bottleneck if two or more
weapons were involved.

Finally, and most importantly, the
design process was not collaborative. The
system designer essentially disappeared
and the design of the weapon coeffi-
cients became a black art. The single-
user, single-computer deployment did
not encourage developers to invest time
in the development tools.

Enter SOA
SOA Purpose
The SOA was designed, implemented,
and launched with the intent of making
the design tools and data accessible on
UNIX desktops across the building net-
work. Servers were a mixture of personal
computer and UNIX workstations.

SOA Design
Figures 3 and 4 are the UML diagrams
that describe the design of the SOA.
Figure 3 shows the five scenarios or use
cases. Figure 4 (see page 22) describes the
orchestration sequence of the user’s
client application. Note that the fifth Use
Case Store Results was added with the
intent to replace data that was previously
stored in personal directories with a cen-

tral storage repository.
Figure 4 elaborates some details of

the use cases discussed earlier. Note that
results are stored in a database versus
files.

SOA Implementation
Remote access to the database and the
weapon models were provided using

open source Web Services. The Web ser-
vices were constructed using two Java 2
Enterprise Edition (J2EE) Web servers.
The weapon models were accessed using
a SUN Microsystems Java Web Services
Development Pack server. Data Access
Objects were exposed across the network
using an Apache Tomcat Web server with
Axis to provide the Web services connec-

System Designer

System Designer

Developer and Tester

Weapon Models

Operational Flight

Program Simulator

Test Stands

Stage 1:

Generate Truth Data

Stage 2:

Generate Weapon

Coefficients

Stage 3:

Incorporate and Verify

Weapon Coefficients

Run Truth Model

Run Simulator

Run Test Stand

Compare Results

Store Results

Client

Weapon ReleaseWeapon Release

Truth Data

Weapon Coefficients

Figure 2: Former Design Process

System Designer

System Designer

Developer and Tester

Weapon Models

Operational Flight

Program Simulator

Test Stands

Stage 1:

Generate Truth Data

Stage 2:

Generate Weapon

Coefficients

Stage 3:

Incorporate and Verify

Weapon Coefficients

Run Truth Model

Run Simulator

Run Test Stand

Compare Results

Store Results

Client

Weapon Release

M inimum Along Track

Range

M ximum Alon

Maximum

CrossTrack

Range

Maximum

CrossTrack

Range

Maximum Along Track

Range

Minimum Along Track

Range

Maximum

Cross Track

Range

Maximum

Cross Track

Range

Weapon Release

Truth Data

Weapon Coefficients

Figure 3: Use Case

Applying a Service-Oriented Architecture to Operational Flight Program Development

Service-Oriented Architectures

22 CROSSTALK The Journal of Defense Software Engineering September 2007

tion, and Spring/Hibernate to provide
the data access objects, persistence,
object-relational mapping, and database
connection.

The choice to use open source soft-
ware greatly accelerated the implementa-
tion since a major coding effort was
avoided. The majority of the effort was

tweaking pre-existing Java source code
and editing of eXtensible Markup
Language configuration files. The use of
standards-based technology on the serv-
er-side such as Web services ensured
maximum interoperability and tools to
create client applications1.

The lab workstation running the test
stands was accessed via UNIX Remote
Login and Remote Shell Programming
since the client and server workstations
both ran UNIX.

Orchestration of the weapon models,
the database, and the test stands was per-
formed using Matrix Laboratory (MAT-
LAB) in concert with Perl to create a rich
client interface. MATLAB and Perl were
chosen as client orchestration tools since
they were native to the client Sun work-
stations.

MATLAB was chosen primarily
because of its visualization tools, graphi-
cal user interface interfacing tools, math
library, and toolboxes. Most of the engi-
neers, especially the recent hires, had
plenty of hands on experience with
MATLAB. Perl was used for its regular
expression capability to handle text input
and output. Perl also had the ability with
its Simple Object Access Protocol-Lite

Develop Weapon Coefficients()

Client

Developer UNIX Workstation

System Engineer UNIX Workstation

Tester UNIX Workstation

Developer UNIX Workstation

Web Services

J2EE Server Weapon Models

Rlogin and Rsh

Lab Workstation

Test Stands

Web Services

J2EE Server

Data Access Objects

Database

Weapon Model Simulator Test Stand Database

Run Weapon Model

Return Results

Load Weapon Coefficients

Run MATLAB Simulator

Retrieve Results

Load Weapon Coefficients

Run Test Stand

Retrieve Results

Compare Results()

Store Results

Figure 4: Sequence Diagram

Develop Weapon Coefficients()

Client

Developer UNIX Workstation

System Engineer UNIX Workstation

Tester UNIX Workstation

Developer UNIX Workstation

Web Services

J2EE Server Weapon Models

Rlogin and Rsh

Lab Workstation

Test Stands

Web Services

J2EE Server

Data Access Objects

Database

Weapon Model Simulator Test Stand Database

Run Weapon Model

Return Results

Load Weapon Coefficients

Run MATLAB Simulator

Retrieve Results

Load Weapon Coefficients

Run Test Stand

Retrieve Results

Compare Results()

Store Results

Figure 5: Enterprise Diagram

Applying a Service-Oriented Architecture to Operational Flight Program Development

September 2007 www.stsc.hill.af.mil 23

(SOAP-Lite) package to create a Web ser-
vices client simply by setting its service
pointer to the URL of the Web Services
Definition Language file.

Figure 5 shows the final Enterprise
Diagram for the SOA. Note that the sim-
ulator does not appear since it runs local-
ly on the client UNIX workstation.

SOA Innovations
20 Minutes to 20 Seconds
One of the first initiatives was to reduce
the role of the simulator and develop
directly on the test stand. The major hur-
dle was the length of time required to
check whether the coefficient changes
were right or wrong. Coefficient changes
had to be incorporated in the OFP code.
Then the OFP code had to be re-com-
piled which took more than 20 minutes.

The contractor responsible for the
test stands recommended and imple-
mented a workaround to speed up the
process. The contractor added a capabili-
ty to upload weapon coefficient files
which took only 20 seconds. The new
process of incorporating coefficient
changes in a file and uploading the file
was simple and fast. With the new
process, it became practical to develop
directly on the test stand.

Multiple Sessions on the
Desktop
Using an older version of MATLAB
(Vers. 5 versus Vers. 14) enabled multiple
MATLAB client sessions to run on the
UNIX desktops. This enabled multiple
projects to be open at one time. Perl, in
concert with its SOAP-Lite package,
facilitated the use of an older version of
MATLAB (Vers. 5) which did not have
the Web services remote access capability
but was less of a central processing unit
and memory hog.

ROI and Progressing Towards the
AS9100 Objectives
The AS9100 organizational objectives are
the following:
1. Decrease cost.
2. Meet or exceed schedule.
3. Improve quality.
4. Develop a culture of continual

improvement.

Decreasing Cost
Cost saving was realized both short term
and long term. In the short term, the
SOA was applied to the current release of
the FCC OFP. Expensive end-of-cycle
rework costs were avoided by getting the
design right the first time. In the long

term, cost saving was realized by reduced
man-hours (50 percent reduction) result-
ing from the improved automation and
efficiency. A fellow engineer working on
a follow-on project noted the following: I
love the tools. I can run the application, check
back later, and find all the graphs and results
that I need.

Meeting and Exceeding Schedule
Requirements
Removing the keystrokes and mouse
clicks reduced the probability of operator
error. Comparison between different
weapon coefficients sets and improved
collaboration lowered the variability
between developers in designing weapon
coefficients. These factors helped to
achieve better predictability in the execu-
tion of the design process.

Improving Quality
The quality of weapon coefficients could
be scored by coverage and false positives.
Coverage is the percentage of the area of
truth model footprint covered. False posi-
tives are the number of impact points
lying outside the truth model footprint.
Also, the number of release points on the
test stand was increased by more than
1,000 percent. The previous method was
too time consuming to allow scoring of
more than 40 release points per set of
weapon coefficients (over 400 coeffi-
cients tested at a time). The efficiency of
the new method now allows us to score
up to 1,100 release points per set of coef-
ficients.

Developing a Culture of Continual
Improvement
The SOA enabled a more data-driven
design process. As alluded to earlier, the
scores coverage and false positives could be
measured from the test run data recorded
in the database. Adding more release
points over a full range of release condi-
tions increased the statistical significance
of these scores. Using the current scores
as a feedback mechanism, the developer
could further refine the weapon coeffi-
cients to produce better scores for the
next design iteration.

Lessons Learned
The engineers considered a base-wide
network version of the SOA. However,
servers and applications on the base-wide
network were subject to quarterly time
compliance network orders and vulnera-
ble to any collateral damage resulting
from patch pushes to update the
Microsoft Operating System and

Standard Desktop Configuration. In the
end, the engineers decided to stay off the
base-wide network to avoid the extra
computer administration and mainte-
nance.

Conclusion
This article presented SOA from the
front line and trenches view of software
OFP development at Hill Air Force Base.
An SOA applied to automate software
development process was introduced. An
overview of the inception, elaboration,
construction, and transition was covered.
Finally, no discussion of an SOA would
be complete without evaluating the ROI.
ROI was presented in the framework of
meeting the 309 Maintenance Wing
AS9100 core objectives.u

Note
1. Deliverables from the Basic Profile

Working Group. 2007. WS-I Web
Services Interoperability Organi-
zation. 6 June 2007 <www.ws-i.org /
deliverables/workinggroup.aspx?
aspx?wg=basicprofile>.

About the Author

Mitch Chan has served
four years at Hill Air
Force Base as a Principle
Engineer and an Em-
bedded Systems Software
Developer for the 309th

developing the OFP for the FCC of the
Block 30 F-16 aircraft. He specializes in
the delivery of air-to-ground weapons
and was the primary FCC engineer
responsible for adding the capability to
deliver the 500-pound JDAM (GBU-38),
currently employed by the F16C+ air-
craft deployed in Iraq. Chan has a bach-
elor’s degree in mathematics from the
University of California at Berkeley, a
bachelor’s degree in electrical engineer-
ing from California State University at
Sacramento, a master’s degree in electri-
cal engineering from Santa Clara
University, and a masters of business
administration from the University of
California at Davis.

309 SMXG
6137 Wardleigh RD
BLDG 1515 RM 248
Hill AFB, UT 84056
Phone: (801) 586-6756
E-mail: mitch.chan@hill.af.mil

